Design microvasculature by simply Animations bioprinting regarding prevascularized spheroids inside photocrosslinkable gelatin

From EECH Central
Jump to: navigation, search

Furthermore, variety signatures had been investigated using pooling sequencing associated with eight distinctive honeybee numbers, and the outcomes offered evidence of signatures of latest assortment between numbers below different variety aims. In addition, gene ontology (Get) annotation and Kyoto Encyclopedia involving Family genes as well as Genomes (KEGG) process looks at established that picked family genes were most likely linked to numerous organic functions Nintedanib research buy and also molecular performing, which could immediately or not directly affect making noble jam. Each of our results may be used to view the genomic signatures, in addition to implicate a massive look in genomic areas which management the development trait involving elegant jam throughout sweetie bees. This specific paper describes the particular continuation of scientific studies that proven the particular viability regarding CP-Tes remedy like a medium to the launch and removal of dimethyl sulfoxide inside bunnie frequent carotid veins and also founded the particular kinetics involving cryoprotectant permeation for the reason that tissues. Within this cardstock we all report the particular threshold of bunny frequent carotid artery to be able to dimethyl sulfoxide, in concentrations up to 30% (w/w), utilizing a technique of direct exposure that has been meant to control osmotic anxiety. The absolute maximum concentration achieved without injury was 15% (w/w). Vessels were after that equilibrated together with 15% dimethyl sulfoxide along with cooled to be able to -80°C at 2.25, Zero.69, Two.16, or even In search of.63°C/min we were holding after that moved to the actual petrol stage of an liquefied nitrogen refrigerator temperature below -160°C) for storage. Thawing was carried out in a 37°C water bath. The optimum rate of cooling for these conditions was found to be 0.69°C/min. The maximal recovery of contractile force in response to 10-6 M norepinephrine was 30-40%; relaxation to acetylcholine (an endothelium-mediated function) was 80% of control, and an estimated 71% of endothelial cells survived with minimal ultrastructural change. To lend insight into the potential role of the gasotransmitter hydrogen sulfide (H2S) in facilitating anoxia survival of anoxia-tolerant vertebrates, we quantified the gene expression of the primary H2S-synthesizing enzymes, 3-mercaptopyruvate sulfurtransferase (3MST), cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), in ventricle and brain of normoxic, anoxic and reoxygenated 21 °C- and 5 °C-acclimated freshwater turtles (Trachemys scripta) and 10 °C-acclimated crucian carp (Carassius carassius). Semi-quantitative Western blotting analysis was also conducted to assess 3MST and CBS protein abundance in ventricle and brain of 5 °C turtles and 10 °C crucian carp subjected to normoxia, anoxia and reoxygenation. We hypothesized that if H2S was advantageous for anoxia survival, expression levels would remain unchanged or be upregulated with anoxia and/or reoxygenation. Indeed, for both species, gene and protein expression were largely maintained with anoxia exposure (24 h, 21 °C; 5 d, 10 °C; 14 d, 5 °C). With reoxygenation, 3MST expression was increased in turtle and crucian carp brain at the protein and gene level, respectively. Additionally, the effect of cold acclimation on gene expression was assessed in several tissues of the turtle. Expression levels were maintained in most tissues, but decreased in others. The maintenance of gene and protein expression of the H2S-producing enzymes with anoxia exposure and the up-regulation of 3MST with reoxygenation suggests that H2S may facilitate anoxic survival of the two champions of vertebrate anoxia survival. The differential effects of cold acclimation on H2S enzyme expression may influence blood flow to different tissues during winter anoxia. Dental unit water systems (DUWS) provide an excellent environment for biofilm formation and can form a potential health risk for patients and staff. To control this biofilm formation, better understanding of the DUWS biofilm ecology is needed. Described is a newly developed in-vitro DUWS model which is easy to build, can be inoculated with different water sources and allows for sampling of both the effluent and biofilm. Unlike most models, a dynamic flow pattern, typical for a dental unit is used to provide water as a nutrient source. Microbial growth and composition were analyzed using heterotrophic plate counts (HPC) and 16S rDNA sequencing. Growth was reproducible in all models, reaching quasi-steady state at day 16 in the effluent (105-106 CFU∙mL-1) and day 23 in the biofilm (108 and 107 CFU∙cm-2) for non-potable and potable water, respectively. Principal component analysis of the microbial composition showed that biofilms originating from either non-potable or potable water were significantly different after 30 days of growth (n = 8, PERMANOVA, F = 35.6, p  less then  .005). Treatment of the biofilms with 1000 ppm active chlorine showed a biological and statistical significant decrease in viable counts in the effluent phase to below the detection limit of 100 CFU∙mL-1. The HPC returned to pre-treatment levels within 14 days. Using this model results in inoculum dependent biofilms with a higher bacterial density compared to previously described models. The relative ease in which samples can be taken allows for the monitoring of antimicrobial disinfection efficacy on the effluent, biofilm and matrix. Nanoparticles are excellent imaging agents for cancer, but variability in chemical structure, racemic mixtures, and addition of heavy metals hinders FDA approval in the United States. We developed a small ultra-red fluorescent protein, named smURFP, to have optical properties similar to the small-molecule Cy5, a heptamethine subclass of cyanine dyes (Ex/Em = 642/670 nm). smURFP has a fluorescence quantum yield of 18% and expresses so well in E. coli, that gram quantities of fluorescent protein are purified from cultures in the laboratory. In this research, the fluorescent protein smURFP was combined with bovine serum albumin into fluorescent protein nanoparticles. These nanoparticles are fluorescent with a quantum yield of 17% and 12-14 nm in diameter. The far-red fluorescent protein nanoparticles noninvasively image tumors in living mice via the enhanced permeation and retention (EPR) mechanism. This manuscript describes the use of a new fluorescent protein nanoparticle for in vivo fluorescent imaging. This protein nanoparticle core should prove useful as a biomacromolecular scaffold, which could bear extended chemical modifications for studies, such as the in vivo imaging of fluorescent protein nanoparticles targeted to primary and metastatic cancer, theranostic treatment, and/or dual-modality imaging with positron emission tomography for entire human imaging. Recently, biopolymer-based non-traditional luminogens had attracted a great deal of interest because of their potential applications in biomedical field. Herein, we report for the first time that carboxymethyl chitosan (CMCh) can exhibit strong blue fluorescence at λ = 436.8 nm when brought in contact with zinc ion (Zn2+) in both solution and hydrogel states. The resultant CMCh-Zn sample exhibits a typical fluorescence lifetime of 3.68 ns and a quantum yield of 6.8%. The fluorescence behaviors of CMCh-Zn samples at different excitation wavelengths, CMCh concentrations, temperature, and pH values, are also investigated. The results clearly indicate clustering-triggered emission characteristic of the CMCh-Zn. In order to further elucidate the chemical nature of this new fluorescence system, a series of CMCh-Zn samples are characterized by using ultraviolet-visible spectrometer, Fourier-transform infrared spectrometer and X-ray diffractometer. The data suggest that the metal-ligand complexation of CMCh with Zn2+ account for the generation of such an enhanced fluorescence. Alzheimer's disease (AD) is a fatal neurodegenerative disorder with an alarming increase in the death rate every year. AD is characterised by an aberrant accumulation of proteins in the form of aggregates. The axonal microtubule-associated protein Tau and amyloid-β undergo structural transition to β-sheet rich structure and form aggregates in neuronal soma as well as in the extracellular region. The loss of Tau from microtubules leads to the disintegration of axon and causing neuronal degeneration. This led to the development of effective drugs against AD, to prevent Tau aggregation. Here, we synthesized and screen metal-based complexes to prevent Tau protein aggregation. ThS fluorescence and TEM suggested the role of synthetic cobalt complexes in inhibiting Tau aggregation. CD spectroscopy showed that these complexes prevented conformational changes in Tau to β-sheet. CBMCs were not toxic at lower concentrations and formed non-toxic Tau species. L1 and L2 prevented membrane leakage; whereas, higher concentrations of L3 caused membrane leakage as observed by LDH release assay. The overall results indicate the synthetic cobalt complexes to be a promising molecule against AD. V.Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.515.820.132.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves. V.Of late, measures are being undertaken to curtail deforestation thereby to save the environment. In this venture, agro waste products are utilized for structural applications instead of wood. By this way, the α-cellulosic micro filler, which are isolated from Cocos nucifera var Aurantiaca Peduncle (CAP) through chemical treatment process, are systematically utilized as a reinforcing material in thermo set epoxy polymers as a replacement by manmade carbon, ceramic fillers and wood derived products. The results on mechanical properties such as tensile, flexural, impact test revealed that these properties of the α-cellulosic micro filler reinforced epoxy composites increased in linear nature for 3 wt% to 15 wt% of filler loading and 15 wt% shows the superior behaviour in their mechanical properties. The internal structure of the fractured mechanical test specimens are investigated through Field Emission Scanning Electron Microscopy (FE-SEM). In addition to that, visco-elastic behaviour, thermal stability of the 15 wt% of α-cellulosic micro filler reinforced epoxy composite were analyzed through dynamic mechanical and thermo gravimetric analysis and compare with pristine epoxy. V.In this study, pea protein isolate (PPI) nanoparticles were fabricated with calcium-induced cross-linking and the potential as a nano-carrier for protecting resveratrol (RES) from degradation as well as improving its antioxidant activities was investigated. Ca2+ ions concentration and pH value had significant impacts on the formation of PPI nanoparticles. Dissociation assays suggested that PPI nanoparticles were mainly formed and stabilized by Ca2+ ions induced salt-bridge, hydrophobic interaction, and hydrogen bonding. Encapsulation efficiency (EE) and Loading amount (LA) of RES in PPI nanoparticles was 74.08%, and 30.24 μg/mg protein, respectively. Fluorescence emission results suggested that the formation of RES-PPI nanoparticles was primarily driven with hydrophobic interaction. AFM results clearly indicated that both RES-PPI nanocomplexes and RES-PPI nanoparticles were nano-scale, spherical shaped and distributed uniformly. RES-PPI nanoparticles exhibited higher physicochemical stability (Z-average diameter stability and RES retention) than RES-SPI nanocomplexes. Antioxidant ability of RES can be remarkably enhanced with both PPI-based nano-delivery systems. Ca2+ ions induced PPI nanoparticles obtained in this study have the great potential as functional delivery systems for hydrophobic nutraceuticals in food, and pharmaceutical industry. In recent years, the film production from natural polymers has considerably increased in food industry as an alternative to the petroleum based synthetic films. Chitosan is one of the most preferred biopolymers for bio-based film production, due to its biocompatibility, biodegradability, antioxidant activity and antimicrobial properties. Because of its hydrophilic properties, chitosan based films dissolve in water, limiting its uses in industry, to overcome this problem; we mixed 200 and 400 mg of the sea urchin spine powder (SUSP) with 20 mL chitosan gel respectively, to obtain a hydrophobic film. The chitosan films prepared with 200 mg SUSP showed a rise in the degree of contact angle from 70.2° to 107° providing hydrophobicity properties. On the other hand, addition of 400 mg of SUSP to chitosan film resulted in a contact angle of 96.1°. Moreover, the antioxidant activity and thermal stability of the films were increased in the presence of SUSP. Fourier Transform Infrared Spectrophotometry results proved the interactions between chitosan and SUSP. Chitosan films have smooth surface while SUSP blended films have rough surface morphology. These results demonstrated that SUSP is needed to improve the properties of chitosan films for usage in food industry. Particles size of disperse dye in dye bath seriously affected its dyeing quality. Here, we prepared a nano disperse dye with average particles size of 94 nm by self-assembly using a hydroxypropyl sulfonated alkali lignin dispersant (HSAL) and azo disperse dye (C.I. disperse Blue 79). The nano disperse dye exhibited excellent dispersion and stability at high temperature (130 °C), the particle size of that was 1.97 μm. The reducing effect of nano dye (azo structure) was decreased to 5.39% and the dye uptake reached up to 94.27%. The interaction mechanism between lignin derivatives dispersant and dye particles was investigated through the adsorption behaviors by employing quartz crystal microbalance with dissipation monitoring and AFM. The higher adsorption amount of HSAL on the dye surface displayed the more viscoelastic adsorption layer than that of sodium lignosulfonate. High sulfonic group attached to the long alkyl chain in HSAL molecules can stretch out to the aqueous phase to provide a strong electrostatic repulsion to disperse dye particles and form the nano disperse dye self-assembly. The present study provided a novel preparation method of nano disperse dye, that would broaden the efficient and value-able utilization of biomass lignin in dyeing and printing field. The interfacial properties of ultrahigh methoxylated pectin (UHMP) prepared via esterification of citrus pectin (CP) were investigated. The intrinsic viscosity ([η]) of pectin was significantly decreased from 1211.5 mL/g to 294.9 mL/g as the degree of methylation (DM) increased from 63.18 ± 0.08% to 91.52 ± 0.11%. Surface tension (γ) analysis indicated that UHMP had a critical micelle concentration (CMC) of 0.8 g/L, which was slightly smaller than that of sugar beet pectin (SBP) (1.0 g/L). The morphology of the UHMP aggregation presented a network structure and irregular clusters at 10 μg/mL and 1 μg/mL based on atomic force microscopy (AFM). Transmission electron microscopy (TEM) observations further confirmed the self-aggregation behaviours and rod-like micelles of UHMP. The surface excess (Γ) was 1.69 ± 0.17 μmol/m2 for UHMP, which was lower than the values of SBP (1.88 ± 0.21 μmol/m2) and CP (2.91 ± 0.57 μmol/m2). Correspondingly, UHMP possessed the highest molecular area (A) of 0.99 ± 0.10 nm2. Thus, UHMP was proposed to be more flexible and extendable at the interface. The interfacial shear rheology study suggested that UHMP was able to form an elastic-dominant interfacial film to stabilize the oil/water interface. A new bio-conjugate nano-silver enzyme conjugate complex (BC-nAg-Akp) was formulated containing alkaline protease (Akp). The present research involved synthesis of nAg particles in acetone concentrated enzyme sol using 0.005 M AgNO3 solution formed within interaction time of 24 h through photo catalysis. The BC-nAG-Akp composite exhibited 1.9-fold increase in enzyme activity. The formulation was characterized using techniques viz., SEM, SEM-EDS, TEM, and DLS spectroscopy. The TEM analysis revealed synthesis of silver nano rods with size dimensions ranging from 40 to 80 nm. Likewise, the mean hydrodynamic diameter was 114 nm with polydispersity index of 0.260 and had the largest diffusion constant of 4.28 × 108 amongst the three forms of the formulation (crude, acetone concentrated and partially purified) on DLS characterization. The SEM-EDS analysis showed occurrence of 18.32 and 3.79%weight and %atom of Ag element respectively. The prepared formulation was investigated for its dehairing performance. The ideal dehairing was achieved at 37 °C after 12 h of treatment. The histopathological studies revealed that complete dehairing with minimal rarefication was achieved and was found perform better compared to the commercial Akp and control (crude enzyme) formulations. V.The present work prepared the antibacterial polymeric film (APF) using the different combination of sodium alginate (SA) and cellulose nano whisker (CNW) embedded with copper oxide nanoparticles (CuO NPs). Here, the SA acts as a plasticizer and provides flexibility. The CNW improves barrier properties of the film to limit moisture penetration into food. CuO NPs prevent the microbial contamination to food. Cross-linking and functional relationship of SA-CNW-CuNPs film were confirmed by adopting characterization including SEM, FTIR, EDS and XRD. The film composed with CNW (0.5%)-SA (3%)-CuNPs (5 mM) exhibited promising antibacterial activity against several pathogens in terms of higher zone of inhibition against S. aureus (27.49 ± 0.91 mm), E. coli (12.12 ± 0.58 mm), Salmonella sp. (25.21 ± 1.05 mm), C. albicans (23.35 ± 0.45 mm) and Trichoderma spp. (5.31 ± 1.16 mm). In addition, CNW (0.5%)-SA(3%)-CuO NPs (5 mM) film showed the challenging antioxidant activity in terms of DPPH and ABTS scavenging. Also, the optimized composition of film composed with CNW (0.5%)-SA (3%)-CuO NPs (5 mM) was preventing the microbial contamination in fresh cut pepper (FCP). Therefore, APF composed with CNW (0.5%)-SA (3%)-CuO NPs (5 mM) is proved to be an active food packaging system (FPS) for its utility in food industry to overcome the limitations in conventional food packaging. The enzyme pyridoxal kinase (PdxK) catalyzes the conversion of pyridoxal to pyridoxal-5'-phosphate (PLP) using ATP as the co-factor. The product pyridoxal-5'-phosphate plays a key role in several biological processes such as transamination, decarboxylation and deamination. In the present study, full-length ORF of PdxK from Leishmania donovani (LdPdxK) was cloned and then purified using affinity chromatography. LdPdxK exists as a homo-dimer in solution and shows more activity at near to physiological pH. Biochemical analysis of LdPdxK with pyridoxal, pyridoxamine, pyridoxine and ginkgotoxin revealed its affinity preference towards different substrates. The secondary structure analysis using circular dichroism spectroscopy showed LdPdxK to be predominantly α-helical in organization which tends to decline at lower and higher pH. Simultaneously, LdPdxK was crystallized and its three-dimensional structure in complex with ADP and different substrates were determined. Crystal structure of LdPdxK delineated that it has a central core of β-sheets surrounded by α-helices with a conserved GTGD ribokinase motif. The structures of LdPdxK disclosed no major structural changes between ADP and ADP- substrate bound structures. In addition, comparative structural analysis highlighted the key differences between the active site pockets of leishmanial and human PdxK, rendering LdPdxK an attractive candidate for the designing of novel and specific inhibitors. A novel mesoporous chitin blended MoO3-Montmorillonite nanocomposite was prepared through three-steps synthesis. First, chitin was extracted from prawn shell then MoO3-MMT was prepared, and lastly, chitin was blended with MoO3-MMT. Chitin-MoO3-MMT was applied for the removal of Cu(II) and Pb(II) from wastewater. XRD characterization revealed MoO3 solubility in MMT interlayers, SEM showed a nanocomposite formation with sharp nanorods like-structure and length ranging from 60 to 77.7 nm. FTIR exhibited fundamental changes in the surface functional groups after adsorption. XPS analysis before and after adsorption showed the domination of chemical bonding with N and O. N2 adsorption-desorption isotherm displayed H3-type hysteresis loop and a pore size diameter of 10.67 nm confirming the mesoporous nature. Adsorption efficiency was studied as a function of pH, time, metal concentration and adsorbent mass. Adsorption capacity (Qe) values were 19.03 and 15.92 mg.g-1 for Cu(II) and Pb(II) respectively. The metal surface coverage mapping was 1.87 × 10^19 and 4.34 × 10^18 atoms/m2 for Cu(II) and Pb(II) respectively. Adsorption followed Langmuir isotherm and pseudo-second-order (PSO) kinetics suggesting a monolayer chemisorption domination. Intraparticle diffusion (IPD) model showed a boundary layer control. Thermodynamically, the adsorption was spontaneous and endothermic with activation energies 25.94 and 29.37 kJ.mol-1 for Cu(II) and Pb(II) respectively. V.Influence of water content on the expression of lignocellulolytic enzymes by Phanerochaete chrysosporium remains unclear. This work compares the enzyme production profiles of P. chrysosporium during solid-state and submerged fermentation. There were 110 and 64 extracellular carbohydrate-active enzymes identified in solid-state and submerged fermentation respectively, among which 57 enzymes were common to both of the secretomes. P. chrysosporium secreted more cellulases (especially lytic polysaccharide monooxygenase) and hemicellulases during solid-state fermentation while the proportion of enzyme containing carbohydrate-binding module was higher for submerged fermentation. Although its activities were weaker, the enzyme cocktail from submerged fermentation was surprisingly more effective in hydrolysis at low substrate loading. This advantage of enzymes from submerged fermentation was mainly attributed to carbohydrate-binding module because more xylanases bound with substrate at the beginning of hydrolysis. These results reveal the influence of fermentation conditions on enzyme produced by P. chrysosporium for the first time and show the importance of carbohydrate-binding module in the hydrolysis process of lignocellulose. V.Polyacrylamide (PAM) has been used as a coagulant aid in water treatment process for past decades, but it has caused great damages to human nervous system. Developing new coagulant aid with high biological safety is urgently demanded. This study provides a natural biomacromolecule coagulant aid with good biosecurity-Enteromorpha prolifera polysaccharide (Ep). Its coagulant aid efficiency and mechanism were investigated in terms of organics removal, floc properties and membrane fouling degree. In addition, contrast experiments were conducted with PAM to evaluate its potential of industrial applications. Results showed that organics removal could be increased by 23% when 0.3 mg/L Ep was used, which exhibited comparable aid effects to PAM. Due to the bridging-sweep aid role of Ep, flocs sizes, growth rate and recovery factor reached 470 μm, 62.6 μm/min and 0.492, respectively, while only 170 μm, 14.0 μm/min and 0.326 were obtained by PAM. Additionally, flocs exhibited more porous and multi-branched structures when Ep was applied, which caused less ultrafiltration membrane fouling (eventual J/J0 value = 0.52). As a result, Ep could be considered as a potential substitute of PAM, since better biosecurity, higher organics removal and lower membrane fouling could be obtained simultaneously by Ep addition. V.Guava is a perishable fruit susceptible to post-harvest losses. So, the development of biodegradable films based on acetylated cassava starch (ACS) and hydroxyethyl cellulose (HEC) could be an alternative to increase guavas (Psidium guajava L.) shelf life. Films were characterized by solubility, opacity, water vapor transport, and thickness. Mass loss, texture, titratable acidity, soluble solids, vitamin C, and skin color of the fruits were analyzed. The films with higher HEC concentration were more transparent and hygroscopic. Guava coated with 75% HEC and 25% ACS or 100% HEC films increased firmness, maintained green skin color and reduced ripeness, lasting for 13 days, ensuring that the ACS and HEC based films can increase guavas shelf life, besides decrease environmental impacts of non-biodegradable packages. Women who smoke may be motivated to switch to vaping (use electronic cigarettes, e-cigs) around pregnancy in seeking to alleviate known hazards of smoking. E-cigs typically contain nicotine but either eliminates or greatly reduces exposure to the combustion products of tobacco. We studied a U.S.-wide representative sample of 31,973 live singleton births in 2016. In the three months before pregnancy, 5029 (14%) mothers exclusively smoked tobacco ("sole smokers") and 976 (3%) used both tobacco and e-cigs ("dual-users"). Among pre-pregnancy sole smokers, 44% continued to only smoke while 1% became dual-users in late pregnancy. Logistic regression models were used to assess the adjusted odds ratios (aOR) for preterm and small-for-gestational-age (SGA) by reported smoking or vaping in late pregnancy. Compared to women who used neither product ("non-users"), late-pregnancy sole smokers had increased risks for preterm birth (aOR 1.6, 95% CI 1.2-2.0) and SGA (aOR 2.4, 95% CI 1.8-2.9), after adjusting for their pre-pregnancy smoking or vaping status and other confounders. The adjusted models also showed that late-pregnancy sole vapers had similar risk of preterm birth as non-users (aOR 1.2, 95% CI 0.5-2.7). Late-pregnancy dual-users also had similar risk of preterm birth as non-users (aOR 1.3, 95% CI 0.8-2.3). However, late-pregnancy sole vapers and dual-users had increased risk of SGA compared to non-users (aOR 2.4, 95% CI 1.0-5.7 for sole vapers, and aOR 2.3 95% CI 1.3-4.1 for dual-users). These findings suggest that vapers during pregnancy had similar risk of preterm as non-users but still had elevated risk for restricted fetal growth. High glucose (HG)-induced oxidative damage of retinal ganglion cells (RGCs) contributes to the pathogenesis of diabetic retinopathy, a severe complication of diabetes mellitus. Brahma-related gene 1 (Brg1) has currently emerged as a cytoprotective protein that alleviates oxidative damage induced by various stress. However, whether Brg1 is involved in the regulation of HG-induced oxidative damage of RGCs remains unknown. In this study, we aimed to investigate the potential role and underlying mechanism of Brg1 in regulating HG-induced damage of RGCs. We found that Brg1 expression was significantly downregulated in RGCs in response to HG treatment. Functional experiments showed that Brg1 knockdown enhanced HG-induced apoptosis and production of reactive oxygen species, while Brg1 overexpression suppressed HG-induced apoptosis and reactive oxygen species production, showing a protective effect. Moreover, Brg1 overexpression resulted in an increase in nuclear expression of nuclear factor-erythroid-2-related factor-2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in RGCs. Notably, inhibition of Nrf2 or HO-1 significantly blocked Brg1-mediated protection against HG-induced damage. Overall, these findings demonstrate that Brg1 protects RGCs from HG-induced oxidative damage through promotion of Nrf2/HO-1 signaling, indicating a potential role of Brg1 in the pathogenesis of diabetic retinopathy. Coronavirus Disease 2019 (COVID-19) is an emerging disease with a rapid increase in cases and deaths since its first identification in Wuhan, China, in December 2019. Limited data are available about COVID-19 during pregnancy; however, information on illnesses associated with other highly pathogenic coronaviruses (i.e., severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS)) might provide insights into COVID-19's effects during pregnancy. BACKGROUND Uterine fibroids are common. Symptoms are debilitating for many, leading to high medical and societal costs. Indirect data suggest that compared to white women, African-Americans develop fibroids at least ten years earlier on average, and their higher health burden has been well documented. OBJECTIVE To directly measure fibroid incidence and growth in a large, community-based cohort of young African-American women. STUDY DESIGN This observational, community-based, prospective study enrolled 1693 African American women, ages 23-35 with no prior diagnosis of fibroids. Standardized transvaginal ultrasound examinations at enrollment and after approximately 18-months were conducted to identify and measure fibroids ≥0.5 cm in diameter. Fibroid growth (change in natural log volume per 18 months) was analyzed with mixed model regression (n = 344 fibroids from 251 women whose baseline ultrasound revealed already existing fibroids). RESULTS Among the 1123 fibroid-free women with follow-up data (88% were foll community-based sample. Findings indicate that very small fibroids are very dynamic in their growth, with rapid growth, but a high chance of loss. Larger fibroids grow more slowly. For example, a 2-cm fibroid is likely to take 4-5 years to double its diameter. Detailed data on fibroid incidence confirm an early onset in African American women. Published by Elsevier Inc.Cytomegalovirus is the most common congenital infection, affecting 0.5-2% of all live births and the main non-genetic cause of congenital sensorineural hearing loss and neurological damage. Congenital CMV can follow maternal primary infection or non-primary infection. Sensori-neurological morbidity is confined to the first trimester with up to 40-50% of infected neonates developing sequelae after first trimester primary infection. Serological testing before 14 weeks is critical to identify primary infection within three months around conception but is not informative in women already immune before pregnancy. In Europe and the US, primary infection in the first trimester are mainly seen in young parous women with a previous child below 3. Congenital CMV should be evoked on prenatal ultrasound when the fetus is small for gestation, shows echogenic bowel, effusions, or any cerebral anomaly. Although the sensitivity of routine ultrasound in predicting neonatal symptoms is around 25%, serial targeted ultrasound anikely to improve hearing and neurological symptoms, the extent of which and the duration of treatment are still debated. In conclusion, congenital CMV infection is a public health challenge. In view of recent knowledge on diagnosis, pre- and postnatal management, health care providers should re-evaluate screening programs in early pregnancy and at birth. Depression is a serious and worldwide neuropsychiatric disesase, and developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. Bone morphogenetic protein (BMP) signals modulate numerous developmental, physiological, and homeostatic processes. The functions of BMPs are also regulated by secreted extracellular antagonists such as chordin and noggin. Chordin has abundant expression in adult brain, and may play critical role in the central nervous system. In this study, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, western blotting, quantitative real-time reverse transcription PCR, immunohistochemistry, recombinant mouse chordin protein and AAV-Chordin-EGFP were together used to explore the role of chordin in the pathogenesis of depression. It was found that CSDS significantly decreased the expression of chordin in the hippocampus but not other related brain regions. Moreover, both pharmacological and genetic overexpression of hippocampal chordin fully protected against the CSDS-induced depressive-like effects in mice. Collectively, hippocampal chordin could be a novel antidepressant target, and this study further highlights the importance of the hippocampal BMP system in the pathophysiology of depression. Remodeling of basement membrane proteins contributes to tumor progression towards the metastatic stage. One of these proteins, laminin 521 (LN521), sustains embryonic and induced pluripotent stem cell self-renewal, but its putative role in cancer is poorly described. In the present study we found that LN521 promotes colorectal cancer (CRC) cell self-renewal and invasion. siRNA-mediated knockdown of endogenously-produced laminin alpha 5, as well as treatment with neutralizing antibodies against integrin α3β1 and α6β1, were able to reverse the effect of LN521 on self-renewal. Exposure of CRC cells to LN521 enhanced STAT3 phosphorylation, and incubation with STAT3 inhibitors Napabucasin and Stattic was sufficient to block the LN521-driven self-renewal increase. Robust expression of laminin alpha 5 was detected in 7/10 liver metastases tissue sections collected from CRC patients as well as in mouse liver metastasis xenografts, in most cases within areas expressing metastasis cancer stem cell markers such as c-KIT and CD44v6. Finally, retrospective analysis of multiple CRC datasets highlighted the significant association between high LN521 mRNA expression and poor clinical outcome in colorectal cancer patients. Collectively our results indicate that high Laminin 521 expression is a frequent feature of metastatic dissemination in CRC and that it promotes cell invasion and self-renewal, the latter through engagement of integrin isoforms and activation of STAT3 signaling.