Practical use regarding Charlson Comorbidity List to calculate Early on Fatality rate and also General Tactical inside Elderly Individuals With Intense Myeloid The leukemia disease

From EECH Central
Jump to: navigation, search

The weather within flowback h2o samples have been also based on inductively paired plasma-optical exhaust spectroscopy (ICP-OES). ICP-OES data revealed spatial variants to the components on the list of various water wells. Among the components, K confirmed the greatest variation (comparative standard Money\rm deviation Equates to 62.8\% $deviation=62.8%) and also Mg the minimum (comparable standard $\rm deviWe report the recording of optical gratings on photorefractive $ \rm Bi_2\rm TeO_5 $Bi2TeO5 crystals using $ \lambda = 532\,\,\rm nm $λ=532nm wavelength light. We studied the behavior of this material under high light intensity and found the presence of fast and slow gratings, both of photorefractive nature and exhibiting quite significant light intensity dependence for the $ 1 - 13\,\,\rm kW/\rm m^2 $1-13kW/m2 range. A permanent grating was found after the complete erasure of fast and slow holograms recorded at room temperature. The experimental results show that the diffraction efficiency of the permanent grating increases with the recorded light intensity. The permanent grating performance as an optical Bragg filter was characterized by measuring the angular selectivity approximately 1.0 mrad. We also show that the diffraction efficiency of the permanent grating is quite dependent on the direction of light polarization.A feasibility study of coherent differential absorption lidar is conducted using a 1.53-µm wavelength for simultaneously retrieving the water vapor density and wind speed profiles. We selected the ON and OFF wavelengths to be 1531.383 and 1531.555 nm, respectively, for minimizing the effect of the temperature change in the atmosphere. The systematic measurement error can be reduced to below 5% by stabilizing the ON wavelength from $-64$-64 to 102 MHz around the center of the water vapor absorption line. Analysis of the speckle and photon statistics errors reveal that the relative error of the water vapor density is less than 10% at the altitude from 0.1 to 1.7 km with the 100 m range resolution with 10 min data accumulation time. The simultaneous measurement of wind speed and direction can also be achieved by employing a conical scan mechanism.We present an experimental scheme performing scalar magnetometry based on the fitting of Rb $ \rm D_2 $D2 line spectra recorded by derivative selective reflection spectroscopy from an optical nanometric-thick cell. To demonstrate its efficiency, the magnetometer is used to measure the inhomogeneous magnetic field produced by a permanent neodymium--iron-boron alloy ring magnet at different distances. The computational tasks are realized by relatively cheap electronic components an Arduino Due board for external control of the laser and acquisition of spectra, and a Raspberry Pi computer for the fitting. The coefficient of variation of the measurements remains under 5% in the magnetic field range of 40-200 mT, limited only by the size of the oven and translation stage used in our experiment. The proposed scheme is expected to operate with high measurement precision also for stronger magnetic fields ($ \gt 500\;\rm mT$>500mT) in the hyperfine Paschen-Back regime, where the evolution of atomic transitioIn this paper, we analyze the performance of a distributed acoustic sensor at two different interrogation wavelengths. We show theoretically that, in a coherent optical time-domain reflectometry (OTDR) operating at 850 nm, the dynamic signal-to-noise ratio (SNR) is enhanced, compared to an identical configuration operating at 1550 nm. Such enhancement is maximum at the interrogating pulse input section, while decreasing along the fiber in virtue of the higher loss. Experimental tests, carried out using two heterodyne C-OTDR detection schemes operating at the analyzed wavelengths, confirm the SNR improvement.A radial shearing interferometer (RSI) using a randomly encoded cosinusoidal zone plate (RECZP) to measure the wavefront is proposed. The RECZP has two foci, i.e., a virtual focus and a real focus, so its Fresnel diffractions contain only two beams. These two beams can be regarded as the extended beam and the contracted beam in the RSI, respectively. This RSI is composed of a RECZP and a charge-coupled device (CCD). The radial shearing rate is continuously adjustable by changing the distance between the CCD and RECZP, which is good for measurement sensitivity and dynamic range for different situation requirements. In the simulation experiment, we analyzed the influence of beam tilt error, distance error of zone plate and CCD, CCD camera nonlinearity, and noise on wavefront reconstruction results. We also analyzed the effects of different fabrication errors (randomly encoded principle error, sidewall angle error, depth error, and alignment error of amplitude zone plate and phase zone plate) on the diffraction This joint feature issue of Optics Express and Applied Optics highlights contributions from authors who presented their latest research at the OSA Optical Sensors and Sensing Congress, held in San Jose, California, USA, from 25-27 June 2019. The joint feature issue comprises six contributed papers, which expand upon their respective conference proceedings. The published papers introduced here cover a range of timely research topics in optics and photonics for active open-path sensing, radiometry, and adaptive optics and fiber devices.In this paper, an ultra-wideband terahertz absorber is designed utilizing a graphene-based metasurface. The absorber is composed of three layers including the graphene metasurface, Topas-cyclic olefin copolymer dielectric substrate, and a gold ground layer. The particle swarm optimization algorithm and interpolate quasi-Newton optimization are utilized to find an optimized structure with the widest bandwidth. Full-wave simulations verify achieving absorbance of more than 90% in an extremely wide frequency band within the range of 1 THz to 3.5 THz (fractional bandwidth = 111%) under illumination of a normal incident wave. The proposed structure is polarization insensitive up to a polarization angle of 75°, while the performance of the absorber (absorbance level and bandwidth) is almost fixed for incident angles $ \theta $θ up to 60°. Moreover, the switching capability of the structure from reflection ($ \gt 92\% $>92%) to absorption ($ \gt 90\% $>90%) is investigated. The equivalent circuit model is extracWith a fundamentally modified structural illumination algorithm, the recently proposed speckle-illuminated Fourier ptychography can be a promising superresolution imaging technique with a large field of view. However, its imaging performance, including image resolution and signal-to-noise ratio, has been discussed less, limiting its further applications. Thus, an in-depth study of this new imaging technique is highly required. In this paper, with theoretical analysis, numerical simulations, and experiments, the influence of both diffuser roughness in the experimental setup and numerical aperture size in iterative reconstruction on the imaging performance of speckle-illuminated Fourier ptychography was studied in detail, and the result explained why a rougher diffuser and larger reconstruction aperture can generate a higher-resolution image with more noise and showed how to get optimized diffuser roughness and reconstruction aperture size by considering the trade-off between imaging resolution and signal-to-noIn this work, we derive closed-form expressions for determination of the linear birefringence and linear dichroism of uniaxial crystals utilizing transmission ellipsometry measurements at small angles of incidence in $ c $c-cut crystal substrates. The model-free method we use is an algebraic generalization of the method reported in Appl. Opt.44, 3153 (2005).APOPAI0003-693510.1364/AO.44.003153 The optical anisotropy of substrates of sapphire, 4H-SiC, and 6H-SiC single crystals is measured for illustration.Light-nanomaterial interaction is accompanied by a scattering force and a heating effect. When silver nanowires are irradiated by a laser pulse with light intensity above the melting threshold, they are observed to melt into nanospheres and fly away from their original position. Simulation and experimental results show that the localized surface plasmon resonance excited by laser pulse will heat the ends and junction areas of silver nanowires, causing the occurrence of local melting at these locations. Since the local melting cannot alter the position of silver nanowire, a mathematical model was developed to evaluate the scattering force acting on silver nanowire. According to the developed mathematical model, the scattering force acting on silver nanowire mainly depends on specific surface area of silver nanowire and incident light intensity. When the light intensity of the laser pulse is $3.0 \times 10^12\;\rm W/\rm m^2$3.0×1012W/m2, the scattering force acting on the silver nanowire can reachIn this paper, an electro-optical 4-to-2 encoder based on a photonic crystal is presented. The structure is composed of four silicon waveguides, four photonic crystal structures including the graphene-$\rm Al_2\rm O_3$Al2O3 stacks, and two optical combiners. Two one-dimensional arrays of air holes in the silicon background are designed parallel to the waveguides. Also, a graphene-$\rm Al_2\rm O_3$Al2O3 stack is placed at the center of each array, which provides the desired interferences. This feature is used for controlling the optical wave transmission through the waveguides. Using two optical combiners at the end of two waveguides, the received signals from the waveguides will be guided toward the output ports. The amount of the transmitted signal from input ports to the output of the encoder can be controlled by applying the proper chemical potential to the graphene-based stacks. The simulation results show that the encoding operation can be achieved by using 0.2 eV and 0.8 eV for chemical We demonstrate a three-dimensional (3D)-printed miniature optical fiber-based polymer Fabry-Perot (FP) interferometric pressure sensor based on direct femtosecond laser writing through two-photon polymerization. An unsealed cylinder column with a suspended polymer diaphragm is directly printed on a single-mode fiber tip to form an FP cavity. Here, two FP cavities with different lengths and the same diaphragm thickness (5 µm) are presented. The fabricated FP interferometer has a fringe contrast larger than 15 dB. The experimental results show that the fabricated device with a 140 µm cavity length has a linear response to the change of pressure with a sensitivity of 3.959 nm/MPa in a range of 0-1100 kPa, and the device with a 90 µm cavity length has a linear pressure sensitivity of 4.097 nm/MPa. The temperature sensitivity is measured to be about 160.2 pm/°C and 156.8 pm/°C, respectively, within the range from 20 to 70°C. The results demonstrate that 3D-printing techniques can be used for directly fabricating FDark-field imaging is a well-known optical method for obtaining edge-enhanced images of objects containing steep gradients in either amplitude or phase. Edge enhancement is commonly achieved by using a small physical obstruction in the center of the Fourier plane of a 4f imaging setup. By blocking the low spatial frequencies in the center of the Fourier plane, only the higher spatial frequencies from the object reach the image plane. In this work, simultaneous optical image processing (i.e., dark-field imaging) and sum-frequency generation are performed by placing a periodically poled lithium niobate crystal in the Fourier plane of a 4f setup and using a 1575 nm upconversion pump beam with a dark core. We demonstrate upconversion dark-field (UDF) imaging in which edge-enhanced images are obtained at the upconverted wavelength ($\sim630\;\rm nm$∼630nm) as a result of infrared object illumination ($\sim 1\;\unicodex00B5\rm m$∼1µm). Furthermore, we experimentally confirm that UDF imaging can be extended We investigate the dispersion properties of TE-polarized surface plasmon polaritons at the interface of a strained graphene cladded one-dimensional photonic crystal and a homogeneous medium. The optical conductivity of graphene under uniform planar tension is numerically calculated using the perturbation theory and the nearest-neighbor tight-binding approximation. We show that the wavelength, propagation length, and penetration depth of the surface plasmon polaritons in the homogeneous environment and the photonic crystal depend on the magnitude and orientation of the applied strain. Depending on the magnitude and direction of the tension, a Van Hove singularity may appear at the electronic band structure of the graphene in the desired frequency interval. We show that the surface mode corresponding to the Van Hove singularity has the least propagation length. We also observe that strain only affects the penetration depth of the low-frequency surface plasmon polaritons in the homogeneous medium and the high-frA mid-infrared absorption spectroscopy technique has been developed to quantitatively and spatially resolve gas temperature and molecular abundance of $ ^1\rm H^35\rm Cl $1H35Cl in the high-temperature pyrolysis and oxidation layers of chlorinated polymers. Two transitions in the R-branch of the fundamental vibrational band of HCl near 3.34 µm are selected due to their relative strength and spectral isolation from other combustion products at elevated temperatures, and they are probed using a distributed feedback interband cascade laser. A scanned-wavelength direct absorption method is employed with a Voigt line-fitting routine to recover projected absorbance areas across the exit plane of a cylindrical polymeric slab, wherein the gaseous core comprises the axisymmetric reaction layer. Tikhonov-regularized Abel inversion of the projected absorbance areas yields line-integrated radial absorption coefficients, from which a two-line ratio is used to infer a radially resolved temperature between the gas cIn this paper, two-axis dielectric laser acceleration is proposed by introducing a dual-grating base laser accelerator structure excited with two orthogonal propagating ultrashort laser pulses. A 2D periodic structure is designed that provides phase synchronicity between the relativistic particle beam and orthogonal propagating laser pulses. In this way, the particle beam can gain energy from both laser pulses simultaneously. It is numerically demonstrated that utilizing this method increases both the acceleration gradient and acceleration factor up to 90% in comparison with dual-grating dielectric laser acceleration. Also, deflecting force elimination, particle beam quality, and bunch acceleration efficiency can be improved using this method.We present an interferometric method to analyze transparent samples using complex fringes generated by a parallel phase shifting radial shear interferometer using two coupled interferometers. Parallel interferograms are generated using two interferometers the first one generates the polarized base pattern, and the second system is used to generate parallel interferograms allowing the adjustment of the x-y positions of the parallel interferograms. To obtain the optical phase map, parallel phase shift is generated by collocating polarizing filters at the output of the system; the polarizers are placed at arbitrary angles since they do not require adjustment because of the phase-recovery algorithm. The optical phase was processed using a two-step algorithm based on a modified Gram-Schmidt orthogonalization method. Such an algorithm has the advantage of not being iterative and is robust to amplitude modulation. The proposed method reduces the number of captures needed in phase-shifting interferometry. We applied We employ numerical simulations to study the effects of noise on the reconstruction of the duration and satellite intensity ratio for transform-limited single and double pulses of 200 as duration. The forms of noise we implement are delay jitters between the attosecond pulse and the near-IR laser field, energy resolution of the photoelectron detector, and Poisson noise in streaking spectrograms with different count levels. We use the streaking method to characterize the pulse and the extended ptychographic iterative engine retrieval algorithm to reconstruct the pulse from the simulated streaking spectrogram. We found that, for practical purposes, when implementing a combination of all three mentioned noise contributions, the attosecond pulse duration will be overestimated when the photoelectron count level is low. Furthermore, the satellite pulse amplitude of the attosecond double pulse can be retrieved within 10% accuracy.A simple approach to estimating microwave Doppler frequency shift (DFS) based on a single dual-polarization quadrature phase shift keying (DP-QPSK) modulator is proposed and experimentally demonstrated. The scheme is capable of estimating both the value and direction of the DFS simultaneously and precisely owing to the introduction of the reference signal. In the proposed approach, the transmitted signal (microwave carrier) and the reference signal are loaded on the upper branch of the DP-QPSK modulator to generate carrier suppression double-sideband signals, respectively, while the echo signal is loaded on the lower branch of the DP-QPSK modulator to perform carrier suppression single-sideband modulation. Then optical sidebands of two branches are combined and sent to a low-speed photodetector to heterodyne. The value of the DFS is equivalent to the frequency of the beat signal between the transmitted and reference signals; meanwhile, the direction can be distinguished by comparing the frequency of the beat We herein develop and demonstrate a stable frequency-locking scheme for Rydberg atomic experiments. We use the Zeeman effect to modulate the three-level ladder-type Rydberg electromagnetically induced transparency (EIT) signal to lock the laser frequency of the coupling light for transition from its intermediate state to a Rydberg state. The effects of polarization of the probe and coupling lights, and the amplitude of the AC modulated magnetic field $\boldsymbol B_0$B0 on the EIT and the corresponding dispersive error signal, are both analyzed. The results show that both the EIT signal and dispersive error signal are the strongest when the polarizations of coupling and probe fields are circular and equal. The signal-to-noise ratio of the dispersive error signal increases with $\boldsymbol B_0$B0. The slope of the dispersive error signal increases first and then decreases with $\boldsymbol B_0$B0, which is related to the increase of the EIT linewidth caused by the higher $\boldsymbol B_0$B0. TWe numerically demonstrate orthogonally polarized dual-comb generation in a single microcavity with normal dispersion assisted by the cross-phase modulation (XPM) effect. It is found that the XPM effect facilitates the emission of a secondary polarized comb with different temporal properties in a wide existence range covering the blue- to red-detuned regime and thus releases the requirements for delicate control on the detuned region of pump frequency. Also, the energy transfer between two polarization components together with the normal-dispersion property contributes to a more balanced intensity difference and significantly increased conversion efficiency from the pump light into the comb operation. This work could provide a route to a low-cost and compact mid-infrared dual-comb system with a lower power requirement as well as an effective approach to higher comb teeth power with improved efficiency for practical applications.The dependence of an emission wavelength on the crystal temperature was first investigated for a diode-pumped continuous-wave $\rm Yb^3 + $Yb3+-doped $\rm CaGdAlO_4$CaGdAlO4 (YbCALGO) laser. A maximum output power of 11 W was obtained, corresponding to a slope efficiency of 19.8%. The output wavelength varied from 1051.10 nm to 1054.72 nm with increased absorbed pump power. This wavelength shift is attributed to a change in the crystal temperature. This observation is, to our best knowledge, an original conclusion about this phenomenon in a YbCALGO laser. We use a temperature-dependent model to explain the emission wavelength shifts that can be generalized to any such quasi-three-level materials.This study proposes an automatic three-dimensional (3D) color shape measurement system based on images recorded by a stereo camera. The system, comprising several off-the-shelf components, is cost-effective yet capable of obtaining quality color 3D objects. In the proposed system, a turntable carrying a checkerboard is used to assist the simultaneous calibration of the stereo camera and the turntable. A slit laser is driven to swing forward and backward for generating stripes on test objects. The stereo images are collected and analyzed for obtaining matching pixels, and, consequently, the 3D point coordinates based on epipolar geometry are obtained. Screened Poisson reconstruction is utilized to integrate and smooth the scanned surfaces. With additional color images from the same camera, several multi-view texturing methods are benchmarked. We concluded that our proposed system can successfully and automatically reconstruct quality 3D color shapes of various objects.This publisher's note corrects the author listing in Appl. Opt.59, 1438 (2020)APOPAI0003-693510.1364/AO.380102.A single-mode-multimode-single-mode (SMS) optical fiber-based displacement sensing system mounted on an Ilizarov transverse tibial bone transport device for microcirculation reconstruction is reported. Wide-range displacement is approximated as a uniform extension of a spring that is connected to an SMS optical fiber structure acting as the displacement sensor and allowing full displacement characterization. Transmission spectrum changes are measured, providing a displacement range of 24 mm with a sensitivity of $ - 55.42\;\rm pm/mm$-55.42pm/mm and a resolution of 45.2 µm. The experimental results are characterized using a polynomial response curve for measuring the displacement due to transverse distraction of the Ilizarov device. The SMS fiber interrogation system is based on a macrobending fiber edge filter-based ratiometric measurement system. The use of SMS fibers together with the macrobending fiber-based interrogation system eliminates the influence of temperature on the displacement measurement. TAtomic vapor magnetometers have demonstrated very high sensitivity to the magnitude of the magnetic field. Vector field measurements are possible using bias fields applied to the vapor. For remote operation, the bias field can be generated using the optical light shift (LS) effect created with an optical beam delivered through optical fiber. Here, it is shown that the optical frequency of the LS effect for an optically pumped vapor vector magnetometer causes an angular error in the measured field orientation when it is tuned near the absorption resonances, countering the benefit of higher response. This angle-shifting effect is dependent on the LS beam power. The LS response, normalized to the LS power, is higher for lower powers due to a saturation effect but also shows a dependence on the LS optical frequency. We show that it is necessary to carefully choose the LS optical frequency and power to maximize the LS effect while avoiding potential angular error.Pyramidal structures, including upright pyramids and inverted pyramids (IPs), are commonly used as light-trapping structures for silicon solar cells and silicon photodetectors. In this paper, the possible ray propagation paths in a pyramidal structure are analyzed by establishing a mathematical model in which up to seven ray paths may exist either in a regular or random pyramidal structure. To reduce the reflectivity, the proportion of the quadruple bounce should be increased because of its lower reflectivity. Therefore, a chain IP structure with a quadruple bounce proportion of 10.33% is proposed, of which the overlap value $\Delta x/w$Δx/w is 0.4. According to theoretical ray-tracing calculations, the weighted average reflectivity is reduced by 0.75% compared to that of a random IP structure. Experimentally, chain IP structures are fabricated from the surface line damage produced by the diamond wire sawing of a silicon wafer as a mask, and the reflectivity of the structures is 0.80% lower than that of a ranThis study reports an internal mixed particle model of dust and nitrate aerosols using the actual haze condition. We performed accurate calculations of linear depolarization ratios (LDR) of nitrate-coated mineral dust particles at three wavelengths (0.35, 0.53, and 1.06 µm) using the T-matrix method. The LDRs of the mono-disperse aerosol particles evolve differently as expressions in the Rayleigh and Mie domains. In the Rayleigh domain, the LDRs increase with the core-shell ratio and the aspect ratio and decrease when the wavelength increases. The forward and backward LDRs depend more on aspect ratio than on the core-shell ratio. In the Mie domain, the LDRs overall increase with the core-shell ratio and the aspect ratio, but there is no significant regular change. When the wavelength increases, the gradual change can be explained by the size parameter of the particles in the vicinity of the Rayleigh domain. For poly-disperse particles, the core-shell ratio mainly affects the position of the side-scattering pePlanar-ports hyperlens structures made of two or four cascaded triangular cuts of planar periodic structures are presented. The hyperlenses are capable of converting electromagnetic evanescent fields to propagating waves, featuring subwavelength resolution and image magnification. One of the two proposed structures features parallel input and output ports. The proposed structures improve the phase and amplitude unbalances, magnification, and resolution of previous planar hyperlenses. Compared to several previous cylindrical hyperlens structures, the proposed structures show competitive or better features. One of the best designs of the proposed structures offers a magnification of 3.86, a resolution of 45 nm, $\lambda /8$λ/8 at the free space wavelength of 365 nm, optical modulation, a measure of image contrast of 0.286, and amplitude unbalance, a measure of image quality of 0.08, the smallest among all previous structures. Detailed comparative data of performance are provided. Although the magnification ofThe alkalinity of sintered ore has an important impact on the quality, output, and energy consumption of blast furnace smelting, and there is an urgent need for a method for accurate quantifying of the alkalinity of sintered ore. The present work explores the combination of the laser-induced breakdown spectroscopy (LIBS) technique and random forest (RF) based on principal component analysis (PCA) and variable importance for the quantitative analysis of the alkalinity of sintered ore. Sixteen sintered ore samples were used in this study, and the characteristic lines of LIBS spectra for sintered ore samples can be identified based on the National Institute of Standards and Technology (NIST) database. At first, abnormal spectra are identified and rejected by PCA coupled with Mahalanobis distance (MD). Then, the input variable for the RF calibration model is optimized according to the variable importance threshold obtained by the RF model, and two RF model parameters of $n_\rm tree$ntree and $m_\rm tryPerformance limitations of currently employed four-level pulse amplitude modulation links and high power consumption of digital signal processing (DSP)-based coherent links for further increase in capacity create an urgent demand for low-power coherent solutions for short-reach data center interconnects. We propose a low-power coherent receiver with analog domain processing for a self-homodyne link. To validate the proposed scheme, a 10 GBd polarization multiplexed carrier-based self-homodyne quadrature phase-shift keying system with a constant modulus algorithm-based equalizer chip is experimentally demonstrated. Also, energy consumption per bit estimates show that the proposed approach results in significant power reduction in comparison with conventional DSP-based solutions.We show a digital holographic approach for polarimetric characterization of a twisted nematic liquid crystal spatial light modulator (TNLC-SLM). An experimental scheme is designed to perform polarization analysis of the SLM with gray levels. This is realized by simultaneous detection of the polarization states of the light from the SLM for a given gray level with the help of a specially designed spatial-frequency multiplex polarization interferometer. This provides amplitude and phase characteristics of the SLM in a single shot. In order to characterize the SLM, we perform Jones matrix imaging at its various gray values (driving voltages), and corresponding results are presented. These results are expected to be useful in designing and developing various SLM-based experiments in the scalar and vectorial domain.Deflectometry has been widely used to detect defects on specular surfaces. However, it is still very challenging to detect defects on semispecular or diffuse surfaces because of the low contrast and low signal-to-noise ratio. To address this challenge, we proposed a phase-modulation combined method for accurate defect detection. Based on the phase and modulation of captured fringes, a dual-branch convolutional neural network is employed to simultaneously extract geometric and photometric features from the phase-shifting pattern sequence and modulation, which improves the defect detection performance significantly. Compared to state-of-the-art methods, we believe the results demonstrated the proposed method's effectiveness and capability to reduce false positives.A phase imaging technique based on the transport of intensity equation with polarization directed flat lenses is demonstrated. Transport-of-intensity phase imaging enables one to obtain a phase distribution from through-focus intensity distributions by solving the transport of intensity equation. In general, the through-focus intensity distributions are obtained by mechanical scanning of an image sensor or target object. Therefore, a precise alignment of an optical system is required. To solve this issue, the introduction of polarization directed flat lenses is presented. In the proposed method, two intensity distributions at different depth positions on the optical axis are obtained without mechanical scanning by changing polarization states of incident light. The feasibility of the proposed method is confirmed by an optical experiment.Spectrum-fingerprint anti-counterfeiting fiber with double luminous centers was tentatively prepared using $\rm SrAl_2\rm O_4\rm Eu^2 + ,\rm Dy^3 + $SrAl2O4Eu2+,Dy3+, $\rm Sr_2\rm MgSi HA15 _2\rm O_7\rm Eu^2 + ,\rm Dy^3 + $Sr2MgSi2O7Eu2+,Dy3+, and PAN powder as main raw materials by wet spinning. The microstructure and spectral properties of the fiber were studied by means of scanning electron microscope (SEM), x-ray diffractometer (XRD), and a fluorescence spectrophotometer. The results showed that the two rare-Earth luminous materials were randomly dispersed on the interior and surface of the fiber. Due to the spinning process, the luminescent materials were agglomerated in fiber, and there were many voids in the fiber. Compared with pure rare-Earth luminous materials, the emission wavelength of the spectrum-fingerprint anti-counterfeiting fiber has no obvious shift, but the addition proportion and amount of two rare-Earth luminous materials have great influence on the The paper presents a detailed theoretical analysis of two-component optical systems of Petzval objective, tele-objectives, reverse tele-objectives, and objectives of anallactic type. This type of optical system is popular in practice, especially in the field of photographic technologies and surveying devices (theodolites, levelling devices, etc.), where anallactic telescopes with inner focusing are used. The paper presents methods of designing of fundamental parameters of the objective, i.e., focal distances of the objective's components and their mutual distance, and radii of curvatures of individual surfaces if the components are cemented doublets. Further, a detailed analysis of aberration properties of those optical systems is presented.An ultracompact and polarization-insensitive power splitter using a subwavelength-grating-based multimode interference (MMI) coupler on an SOI platform is proposed and analyzed in detail. By properly tailoring the structural parameters of the subwavelength gratings embedded in the center of the MMI coupler, the effective reflective indices for TE and TM modes supported by this MMI coupler can be engineered, leading to equal coupling lengths for the two polarizations and an efficient reduction in length for the used MMI coupler. As a result, an ultracompact polarization-insensitive power splitter can be realized. Moreover, to effectively minimize the loss, tapered waveguides are used, and two right angles are cut at both corners of the used MMI coupler. Results show that a footprint of $2.